
Automating IDE Components

Paolo Rossi
WINTECH ITALIA CTO

SENCHA & EMB

MVP

BLOG

blog.paolorossi.net

GITHUB PROJECTS

github.com/paolo-rossi

http://blog.paolorossi.net/
https://github.com/paolo-rossi

Delphi JWT
JSON Web Token Library for REST

Delphi Neon
JSON Serialization Library for REST

GITHUB PROJECTS

Linux Daemon
Library to build real Linux daemons

OpenAPI-Delphi
OpenAPI 3.0 library for Delphi

WiRL Project
JAX-RS Like REST Library for Delphi

https://github.com/paolo-rossi/delphi-jose-jwt
https://github.com/paolo-rossi/delphi-neon
https://github.com/paolo-rossi/linux-daemon
https://github.com/paolo-rossi/OpenAPI-Delphi
https://github.com/delphi-blocks/WiRL

Automating IDE Components

A G E N D A
● The problem

● Source code, libraries and components

● Version Control System

● Installing (IDE) components

● File batch or MSBuild compile

● Automating component installation

THE PROBLEM (1)
Several component sets

+
New Delphi release

=
Time consuming

THE PROBLEM (2)
Several component sets

+
Several Delphi releases

=
Nightmare

* Yes I know, there is a technology called virtualization

Different component versions
+

Same Delphi release
=

Impossibile (is it?)

* Yes I know, there is a technology called virtualization

THE PROBLEM (3)

demo time

Example:
The goal: automatic build!

SOURCE CODE CATEGORIES

➔ Source code
◆ Your own code

➔ Libraries
◆ External libraries
◆ Your own code

➔ Design-Time Components
◆ Installed in the Delphi IDE
◆ Used at Design-time

SOURCE CODE CATEGORIES

➔ Source code
◆ Your own code

➔ Libraries
◆ External libraries
◆ Your own code

➔ Design-Time Components
◆ Installed in the Delphi IDE
◆ Used at Design-time

CODE STRUCTURE IS ALL
➔ Project’s structure evolution

◆ 1 directory, all the files (dpr, pas, dfm, res, dcu, exe)
◆ I’ve seen things you people wouldn't believe…

CODE STRUCTURE IS ALL
➔ Project’s structure evolution

◆ Different directories from different file types
● source (pas, dfm, inc), lib (dcu), bin (exe, dll, etc…)
● projects (dpr, dproj, res, etc…)

CODE STRUCTURE IS ALL
➔ Project’s structure evolution

◆ Different directories for sub-projects
● source/configurator, source/client, source/server
● External libraries (svn ext, git sub-modules)
● Components ->

demo time

Example:
Complex project structure

VERSION CONTROL
➔ Centralized (cvs, svn)

◆ Central copy of your repository
◆ Commit (only) to the remote repo
◆ Simpler workflow

➔ Distributed (git, hg)
◆ Every developer “clones” the full repository locally

● Has the full history of the project
◆ Commit to your repo and the push to the remote
◆ More complex workflow

IDE COMPONENTS

➔ Design-time components management
knowledge is virtually non-existent
◆ Even in skilled Delphi Teams

➔ Who manages them?
◆ (Usually) the most experienced developer
◆ He writes some documentation about installing them

WHAT THEY ARE
➔ File .dpk (Delphi Package)
➔ Runtime packages / Designtime packages
➔ You have to build (runtime) and build+install

(designtime)

SOURCE OR NOT ?

➔ Always purchase the source of your
components
◆ I know! This is the most expensive option
◆ But in the long run it’s more affordable!

➔ With the source you can move your actual
Delphi components for the next Delphi
version

demo time

Example:
Component library structure

INSTALLATION

➔ Windows Installer (*.exe, *.msi)
◆ I hate them (for component installations)

➔ Make file / Batch file
➔ Manual install (*.dpk)

◆ Runtime packages
◆ Designtime packages

WINDOWS INSTALLERS

➔ No thanks!
➔ Binary installers (exe, msi, etc...) for

components are (usually) bad!
➔ Because (some) vendors do not follow the

rules
➔ Preferable a batch file or a make file

WINDOWS INSTALLERS

➔ What if I have only the installer option?
➔ It’s not that hard to DIY

◆ Install a copy of the components in a VM
◆ Copy the source (.pas, .dpk)
◆ Install the .dpk your way

AUTOMATIC INSTALL

➔ Automatic package installer
◆ Compile a .dpk file
◆ Copy the .bpl and the .dcp in the right directory
◆ Add the .bpl to the registry (Known Packages)

➔ Several (OS) projects
➔ Best of all: DIY

THE .DPK (DPROJ)

➔ Meet the LIBSUFFIX
◆ Project Options-> Description -> LIB suffix

➔ LIBSUFFIX is Delphi version dependant
◆ Adds the suffix to the BPL

● You must refer to the BPL without the suffix
◆ You have to change it for every Delphi version
◆ Unfortunately there is no “AUTO” setting (JIRA issue)

demo time

Example:
dpk options (Delphi)

BUILDING THE DPK

➔ dcc32.exe
◆ A looooot of options!
◆ Parameter passing on the command line

➔ MSBuild
◆ MSBuild uses the dproj file
◆ A few parameters to pass
◆ Easiest way to build Delphi projects

● Not only packages

NEXT DELPHI VERSION

➔ Copy the Dxxx components root
➔ For each component

◆ Update the dpk & dproj
● LIBSUFFIX & DLLSUFFIX

◆ Update component’s IFDEF
● {$IFDEF VERxxx}
● Use {$IF CompilerVersion > xx}

demo time

Example:
Simulate the D10.2 to D10.3 porting

BOTTOM LINE

Automate the boring stuff !

Take control of the components
installation process

The “Next Delphi” full
automated install could be

a few clicks away!

GRAZIE PER
LA PARTECIPAZIONE

DOMANDE?

Automating IDE Components

NEED HELP
WITH YOUR

COMPONENTS?

CONTACT ME

Automating IDE Components

paolo.rossi@wintech-italia.com

HAI UN ARGOMENTO INTERESSANTE?

Contattami a questo indirizzo
paolo.rossi@wintech-italia.com

